Mitigation of Climate Change Impact on Bioclimatic Conditions Using Different Green Space Scenarios: The Case of a Hospital in Gorgan Subtropical Climates

Author:

Borna Reza1,Roshan Gholamreza2,Moghbel Masoumeh3ORCID,Szabó György4ORCID,Ata Behnam5,Attia Shady6ORCID

Affiliation:

1. Department of Geography, Ahvaz Branch, Islamic Azad University, Ahvaz 68875, Iran

2. Department of Geography, Golestan University, Gorgan 49138-15759, Iran

3. Faculty of Geography, University of Tehran, Tehran 14178-53933, Iran

4. Department of Landscape Protection and Environmental Geography, University of Debrecen, 4032 Debrecen, Hungary

5. Department of Social Geography and Regional Development, University of Debrecen, 4023 Debrecen, Hungary

6. Sustainable Building Design Lab, Department UEE, Faculty of Applied Science, Liege University, 4000 Liège, Belgium

Abstract

Urban development and its climatic consequences have caused urban decision-makers to establish strategies to mitigate climate change. The implementation of different green spaces is one of the main strategies to reduce the environmental and climatic consequences of urbanization. Therefore, the main objective of this research is to reveal the effect of different green space scenarios on micro-bioclimatic conditions of a hospital located in Gorgan city, Golestan province. Therefore, in order to determine the position of the hospital building relative to Gorgan’s urban heat island (UHI), the location and changes in UHI intensity of Gorgan were determined as evidence of urban expansion. Since 27 July was determined as the hottest day in Gorgan city based on historical data analysis, the climatic conditions during 27 July 2021 were measured using an AR847 data logger installed in the hospital environment. Additionally, four different conditions, including actual environmental conditions of the hospital (actual conditions), along with the application of cypress trees (scenario A), plane trees (scenario B), and Buxus shrubs (scenario C), have been used to analyze the impact of different vegetation species on the bioclimatic conditions of 5 Azar Hospital during two time intervals, including observational periods (1970–2020) and the decade of the 2040s. Finally, spatiotemporal patterns of the predicted mean vote (PMV) thermal index were calculated for the observational period and during the 2040s using the ENVI-met micro-scale model. Results showed that the study site is in the UHI, which can affect the micro-bioclimatic conditions and the patient’s thermal perception. For all designed scenarios, results indicate that the average PMV index will increase by the 2040s. However, implementing different green space scenarios showed that the minimum and maximum values of PMV were found in scenario B, of 2.7. The actual PMV conditions of the studied site increased by 3.5. The scenario introduction of green spaces during the 2040s indicates that the average PMV at the hospital site will be decreased by 0.9 compared to the actual conditions. The study proves that appropriate green space strategies can reduce thermal loads occurring due to global climate change and improve the thermal conditions in the study area.

Funder

National Research, Development and Innovation Fund of Hungary

Council of Iran National Science Foundation

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3