Affiliation:
1. Wood Science and Engineering, Luleå University of Technology, Forskargatan 1, SE-93187 Skellefteå, Sweden
2. Holmen AB, Strandvägen 1, SE-11451 Stockholm, Sweden
3. Norra Timber, Skeppargatan 1, SE-90403 Umeå, Sweden
Abstract
The modification of Scots pine sapwood (Pinus sylvestris L.) with the heterocyclic compounds imidazole and succinimide was investigated. Pressure-impregnation with aqueous solutions containing imidazole, imidazole + citric acid, succinimide, succinimide + citric acid, and citric acid + sorbitol (CIOL®) with solid contents of 5%, 10%, and 15% was followed by oven-curing at 220 °C for 1 h. During the treatment steps, the changes in mass, bending properties, and anti-swelling efficiency (ASE) were examined. The results indicate that solid concentrations within the range of 5% to 10% were optimal. The results seem to show that there are two differing mechanisms in the modification of imidazole and succinimide, respectively. Mass loss due to heat treatment was highest in the imidazole-treated specimens, whereas it remained low and concentration-independent in the succinimide-treated specimens. After three cycles, the ASE reached 31% for the imidazole-treated specimens and improved to 38% with the addition of citric acid. For succinimide, the ASE increased from 17% to 41%. The bending properties generally showed improvement, except for succinimide + citric acid and CIOL®, which displayed a reduced modulus of rupture. Chemical analyses are warranted to fully understand the reaction mechanisms of these treatments. The positive effects of imidazole treatment are suggested to stem from a thermal reaction between the chemical and the wood, indicated by substantial mass loss during leaching and specimen darkening. Succinimide and citric acid might exhibit polymerization with each other and with wood components, which is akin to the CIOL® process. Further research should delve into the reaction mechanisms and the impact of imidazole and succinimide on biological durability.
Funder
Luleå University of Technology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献