A Study on the V2G Technology Incorporation in a DC Nanogrid and on the Provision of Voltage Regulation to the Power Grid

Author:

Skouros Ioannis,Karlis Athanasios

Abstract

Currently, environmental and climate change issues raise a lot of concerns related to conventional vehicles and renewable energy generation methods. Thus, more and more researchers around the world focus on the development and deployment of Renewable Energy Sources (RES). Additionally, due to the technological advancements in power electronics and electrical batteries, Electrical Vehicles (EVs) are becoming more and more popular. In addition, according to the Vehicle-to-Grid (V2G) operation, the EV batteries can provide electrical energy to the power grid. In this way, many ancillary services can be provided. A Direct Current (DC) nanogrid can be composed by combining the aforementioned technologies. Nanogrids present high efficiency and provide a simple interaction with renewable energy sources and energy storage devices. Firstly, the present study describes the design considerations of a DC nanogrid as well as the control strategies that have to be applied in order to make the V2G operation feasible. Furthermore, the provision of voltage regulation toward the power grid is investigated though the bidirectional transfer of active and reactive power between the DC nanogrid and the power grid. Afterwards, the voltage regulation techniques are applied in an Alternating Current (AC) radial distribution grid are investigated. The proposed system is simulated in Matlab/Simulink software and though the simulation scenarios the impact of the voltage regulation provided by the DC nanogrid is investigated.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3