Micro-Degradation Characteristics and Mechanism of ZnO Varistors under Multi-Pulse Lightning Strike

Author:

Zhang ChunlongORCID,Xing HongyanORCID,Li Chunying,Cai Ran,Lv Dongbo

Abstract

In view of the problem that ZnO varistors are often subjected to thermal breakdown and deterioration due to lightning strikes in low-voltage power distribution systems, this article used a 8/20 µs multi-pulse surge current with a pulse time interval of 50 ms to perform shock experiments on ZnO varistors. SEM scanning electron microscope and an XRD diffractometer were used to analyze the structure of the grain boundary layer and the change of the crystalline phase material of ZnO varistor under the action of a multi-pulse current. The damage mechanism of ZnO varistor under the multi-pulse current was studied at the micro level. The results show that the average impact life of different types of ZnO varistor is significantly different. It was found that the types of trace elements and grain size in the grain boundary layer will affect the ability of ZnO varistor to withstand multi-pulse current. As the number of impulses increases, the grain structure of the ZnO varistor continues to degenerate. The unevenness of internal ion migration and the nonuniformity of the micro-grain boundary layer cause the local energy density to be too large and cause the local temperature rise to be too high, which eventually causes the internal grain boundary to melt through, and the local high temperature may cause the Bi element in the ZnO varistor to change in different crystal phases.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference18 articles.

1. Research progress of low voltage varistor;Su;Electron. Compon. Mater.,2010

2. Analysis and application of capacitance change during the deterioration of zinc oxide varistor;Yang;High Volt. Technol.,2010

3. Research on the design method of combined surge protector;Li;Electr. Porcelain Arrester,2017

4. The failure mode and failure reason of SPD in low-voltage power supply system;Yang;Electr. Porcelain Arrester,2007

5. Protection Against Lightning—Part 1: General Principles,2010

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3