Abstract
Due to the increasing requirements for the reliability of electrical power supply and associated apparatus, it is necessary to provide a detailed analysis of the overvoltage risk of power transformer insulation systems and equipment connected to their terminals. Exposure of transformer windings to overvoltages is the result of the propagation condition of electromagnetic waves in electrical networks and transformer windings. An analysis of transformer winding responses to transients in power systems is of particular importance, especially when protection against surges by typical overvoltage protection systems is applied. The analysis of internal overvoltages in transformers during a typical transient related to switching operations and selected failures is of great importance, particularly to assess the overvoltage exposure of insulation systems in operating conditions. The random nature of overvoltage phenomena in electrical networks implies the usage of computer simulations for the analysis of overvoltage exposures of electrical devices in operation. This article presents the analysis of the impact of transient phenomena in a model of a medium-voltage electrical network during switching operations and ground faults on overvoltages in the internal insulation systems of transformer windings. The basis of the analysis is simulations of overvoltages in the windings, made in the Electromagnetic Transients Program/Alternative Transients Program (EMTP/ATP) using a model with lumped parameters of transformer windings. The analysis covers the impact of the cable line length and the ground fault resistance value on internal overvoltage distributions.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献