Raman Spectroscopy of Disperse Systems with Varying Particle Sizes and Correction of Signal Losses

Author:

Spoor Erik1ORCID,Oerke Viktoria1,Rädle Matthias1ORCID,Repke Jens-Uwe2

Affiliation:

1. CeMOS Research and Transfer Center, Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany

2. Process Dynamics and Operations Group, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

Abstract

In this paper, a dispersion of glass beads of different sizes in an ammonium nitrate solution is investigated with the aid of Raman spectroscopy. The signal losses caused by the dispersion are quantified by an additional scattered light measurement and used to correct the measured ammonium nitrate concentration. Each individual glass bead represents an interface at which the excitation laser is deflected from its direction causing distortion in the received Raman signal. It is shown that the scattering losses measured with the scattered light probe correlate with the loss of the Raman signal, which means that the data obtained can be used to correct the measured values. The resulting correction function considers different particle sizes in the range of 2–99 µm as well as ammonium nitrate concentrations of 0–20 wt% and delivers an RMSEP of 1.952 wt%. This correction provides easier process access to dispersions that were previously difficult or impossible to measure.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3