Dissipation Function: Nonequilibrium Physics and Dynamical Systems

Author:

Caruso Salvatore,Giberti ClaudioORCID,Rondoni LambertoORCID

Abstract

An exact response theory has recently been developed within the field of Nonequilibrium Molecular Dynamics. Its main ingredient is known as the Dissipation Function, Ω. This quantity determines nonequilbrium properties like thermodynamic potentials do with equilibrium states. In particular, Ω can be used to determine the exact response of particle systems obeying classical mechanical laws, subjected to perturbations of arbitrary size. Under certain conditions, it can also be used to express the response of a single system, in contrast to the standard response theory, which concerns ensembles of identical systems. The dimensions of Ω are those of a rate, hence Ω can be associated with the entropy production rate, provided local thermodynamic equilibrium holds. When this is not the case for a particle system, or generic dynamical systems are considered, Ω can equally be defined, and it yields formal, thermodynamic-like, relations. While such relations may have no physical content, they may still constitute interesting characterizations of the relevant dynamics. Moreover, such a formal approach turns physically relevant, because it allows a deeper analysis of Ω and of response theory than possible in case of fully fledged physical models. Here, we investigate the relation between linear and exact response, pointing out conditions for the validity of the response theory, as well as difficulties and opportunities for the physical interpretation of certain formal results.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference58 articles.

1. Studies of the Nonlinear Problems;Fermi,1955

2. The Fermi-Pasta-Ulam Problem: A Status Report;Gallavotti,2007

3. Computer Simulation of Liquids;Allen,2017

4. Il Computer Incontra la Fisica Teorica;Battimelli,2020

5. Fundamentals of Classical Statistical Thermodynamics;Evans,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3