Rule Discovery in Milk Content towards Mastitis Diagnosis: Dealing with Farm Heterogeneity over Multiple Years through Classification Based on Associations

Author:

Ebrahimie EsmaeilORCID,Mohammadi-Dehcheshmeh Manijeh,Laven RichardORCID,Petrovski KiroORCID

Abstract

Subclinical mastitis, an economically challenging disease of dairy cattle, is associated with an increased use of antimicrobials which reduces milk quantity and quality. It is more common than clinical mastitis and far more difficult to detect. Recently, much attention has been paid to the development of machine-learning expert systems for early detection of subclinical mastitis from milking features. However, differences between animals within a farm as well as between farms, particularly across multiple years, are major obstacles to the generalisation of machine learning models. Here, for the first time, we integrated scaling by quartiling with classification based on associations in a multi-year study to deal with farm heterogeneity by discovery of multiple patterns towards mastitis. The data were obtained from one farm comprising Holstein Friesian cows in Ongaonga, New Zealand, using an electronic automated monitoring system. The data collection was repeated annually over 3 consecutive years. Some discovered rules, such as when the milking peak flow is low, electrical conductivity (EC) of milk is low, milk lactose is low, milk fat is high, and milk volume is low, the cow has subclinical mastitis, reached high confidence (>70%) in multiple years. On averages, over 3 years, low level of milk lactose and high value of milk EC were part of 93% and 83.8% of all subclinical mastitis detecting rules, offering a reproducible pattern of subclinical mastitis detection. The scaled year-independent combinational rules provide an easy-to-apply and cost-effective machine-learning expert system for early detection of hidden mastitis using milking parameters.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3