Adenine Nucleotide Translocase 1 Expression Is Coupled to the HSP27-Mediated TLR4 Signaling in Cardiomyocytes

Author:

Winter Julia,Hammer ElkeORCID,Heger Jacqueline,Schultheiss Heinz-Peter,Rauch Ursula,Landmesser Ulf,Dörner AndreaORCID

Abstract

The cardiac-specific overexpression of the adenine nucleotide translocase 1 (ANT1) has cardioprotective effects in various experimental heart disease models. Here, we analyzed the link between ANT1 expression and heat shock protein 27 (HSP27)-mediated toll-like receptor 4 (TLR4) signaling, which represents a novel communication pathway between mitochondria and the extracellular environment. The interaction between ANT1 and HSP27 was identified by co-immunoprecipitation from neonatal rat cardiomyocytes. ANT1 transgenic (ANT1-TG) cardiomyocytes demonstrated elevated HSP27 expression levels. Increased levels of HSP27 were released from the ANT1-TG cardiomyocytes under both normoxic and hypoxic conditions. Extracellular HSP27 stimulated TLR4 signaling via protein kinase B (AKT). The HSP27-mediated activation of the TLR4 pathway was more pronounced in ANT1-TG cardiomyocytes than in wild-type (WT) cardiomyocytes. HSP27-specific antibodies inhibited TLR4 activation and the expression of HSP27. Inhibition of the HSP27-mediated TLR4 signaling pathway with the TLR4 inhibitor oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) reduced the mitochondrial membrane potential (∆ψm) and increased caspase 3/7 activity, which are both markers for cell stress. Conversely, treating cardiomyocytes with recombinant HSP27 protein stimulated TLR4 signaling, induced HSP27 and ANT1 expression, and stabilized the mitochondrial membrane potential. The activation of HSP27 signaling was verified in ischemic ANT1-TG heart tissue, where it correlated with ANT1 expression and the tightness of the inner mitochondrial membrane. Our study shows a new mechanism by which ANT1 is part of the cardioprotective HSP27-mediated TLR4 signaling.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3