CSRR-Based Microwave Sensor for Dielectric Materials Characterization Applied to Soil Water Content Determination

Author:

Oliveira João G. D.ORCID,Pinto Erica N. M. G.,Silva Neto Valdemir P.,D’Assunção Adaildo G.ORCID

Abstract

A new and compact sensor based on the complementary split-ring resonator (CSRR) structure is proposed to characterize the relative permittivity of various dielectric materials, enabling the determination of soil water content (SWC). The proposed sensor consists of a circular microstrip patch antenna supporting a 3D-printed small cylindrical container made out of Acrylonitrile-Butadiene-Styrene (ABS) filament. The principle of operation is based on the shifting of two of the antenna resonant frequencies caused by changing the relative permittivity of the material under test (MUT). Simulations are performed enabling the development of an empirical model of analysis. The sensitivity of the sensor is investigated and its effectiveness is analyzed by characterizing typical dielectric materials. The proposed sensor, which can be applied to characterize different types of dielectric materials, is used to determine the percentage of water contained in different soil types. Prototypes are fabricated and measured and the obtained results are compared with results from other research works, to validate the proposed sensor effectiveness. Moreover, the sensor was used to determine the percentage of water concentration in quartz sand and red clay samples.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A planar DGS sensor for moisture analysis in civil construction aggregates;Sensors and Actuators A: Physical;2024-03

2. Innovative-shaped FBARs for smart sensors;2023 IEEE Conference on Antenna Measurements and Applications (CAMA);2023-11-15

3. Measurement of Soil Moisture Using Microwave Sensors Based on BSF Coupled Lines;ECSA 2023;2023-11-15

4. Comparative Study of Metainspired Resonators for Copper Sensing in Water Bodies;2023 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC);2023-11-05

5. Minkowski Based Microwave Resonator for Material Detection over Sub-6 GHz 5G Spectrum;2023 2nd International Conference on 6G Networking (6GNet);2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3