PAX-MAC: A Low Latency Anycast Protocol with Advanced Preamble

Author:

Heimfarth Tales,Giacomin João Carlos,de Freitas Edison PignatonORCID,Araujo Gustavo Figueiredo,de Araujo João Paulo

Abstract

Wireless sensor networks employ duty-cycles to save energy, with the cost of enlargement of end-to-end latency. Cross-layer protocols that use anycast medium access control achieve latency reduction in asynchronous duty-cycled wireless sensor networks (WSNs). A series of strobed preambles is sent in order to achieve rendezvous with the next relay, selected from a forwarding candidate set (FCS). This paper proposes PAX-MAC: Pramble Ahead Cross-layer Medium Access Control. It is a novel anycast protocol for low latency packet propagation in duty-cycled WSNs. In PAX-MAC, preambles propagate ahead of data packet, prospecting the route towards sink node, while the message is sent some hops later. Simultaneous propagation of preambles and data packets provides latency reduction. The cardinality of FCS determines the average preamble propagation speed, which is lower bounded by data packet propagation speed. Differently from other approaches, our protocol takes the data packet size into account in order to maintain an optimal distance between preamble and data to minimize latency. For determining this distance, a detailed mathematical model is introduced. The performance of several state-of-the-art asynchronous protocols was appraised and compared with PAX-MAC. Our protocol outperforms in latency all other protocols for the simulated scenarios. Its energy expenditure was compatible with the best result among the other protocols. In the worst case, PAX-MAC spent 6 % more energy than the best one for a gain of 20 % in latency.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3