DOA Estimation for Underwater Target by Active Detection on Virtual Time Reversal Using a Uniform Linear Array

Author:

Jing Haixia,Wang Haiyan,Liu Zhengguo,Shen Xiaohong

Abstract

Aiming at addressing the problem caused by multipath effects in direction of arrival (DOA) estimation for underwater targets, a method based on the active detection on virtual time reversal (ADVTR) Capon algorithm is proposed. Unlike the conventional passive target estimation method ignoring the multipath effects but only considering the direct wave, the proposed method is closer to the actual situation in that the multipath signal propagation model is fully taken into account; in addition, active detection (AD) and virtual time reversal (VTR) processes are added, which use active detection to estimate channels, and virtual time reversal to realize focusing in a computer after the source-receive array (SRA) receives the reflected signal of the target. The combination of the two methods can greatly improve the energy of SRA and the precision of target direction estimation. With the popular acoustic field simulation tool Bellhop, the model proposed in this paper is verified. Compared with the conventional Capon method without time reversal, the simulation results show that the ADVTR Capon estimation method is far better, in terms of resolution and suppressing the sidelobes. It is suitable for the target DOA estimation under low signal-to-noise ratio (SNR) conditions. Further, we also show the ADVTR Capon estimation method works well in a real tank experiment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3