Abstract
We describe a new multi-temporal classification for forest/non-forest classes for a 1.3 million square kilometer area encompassing the Xingu River basin, Brazil. This region is well known for its exceptionally high biodiversity, especially in terms of the ichthyofauna, with approximately 600 known species, 10% of which are endemic to the river basin. Global and regional scale datasets do not adequately capture the rapidly changing land cover in this region. Accurate forest cover and forest cover change data are important for understanding the anthropogenic pressures on the aquatic ecosystems. We developed the new classifications with a minimum mapping unit of 0.8 ha from cloud free mosaics of Landsat TM5 and OLI 8 imagery in Google Earth Engine using a classification and regression tree (CART) aided by field photographs for the selection of training and validation points.
Funder
CNPq
Natural Sciences and Engineering Research Council of Canada
Subject
Information Systems and Management,Computer Science Applications,Information Systems
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献