Assessment of Water-Induced Soil Erosion as a Threat to Natura 2000 Protected Areas in Crete Island, Greece

Author:

Stefanidis StefanosORCID,Alexandridis VasileiosORCID,Ghosal KaushikORCID

Abstract

Water erosion is a major threat to biodiversity, according to the European Commission’s Soil Thematic Strategy, as it negatively affects soil structure, soil fertility and water availability for plants. The island of Crete (Southern Greece) has been characterized as a biodiversity hotspot including several Natura 2000 (N2K)-protected areas. The aim of this study was to model the soil loss rate in Crete regarding species richness, habitat types and their conservation status, as well as the MAES (Mapping and Assessment of Ecosystem and their Services) ecosystem types. To this end, the RUSLE soil erosion prediction model was implemented, using freely available geospatial data and cloud-computing processes. The estimated average soil loss in the study area was 6.15 t ha−1 y−1, while there was no significant difference between the terrestrial N2K (6.06 t ha−1 y−1) and non-N2K (6.19 t ha−1 y−1) areas. Notably, the natural habitats of principal importance for the conservation of biodiversity (referred to as “priority” areas), according to Annex I to Directive 92/43/EEC, are threatened by soil erosion with an estimated mean annual soil loss equal to 8.58 t ha−1 y−1. It is also notable that grasslands, heathland and shrubs and sparsely vegetated areas experienced the highest erosion rates among the identified MAES ecosystem types. The results showed that soil erosion is a serious threat to biodiversity in N2K-protected areas. Therefore, there is a need for systematic spatiotemporal monitoring and the implementation of erosion mitigation measures.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3