Mobile-Energy-as-a-Service (MEaaS): Sustainable Electromobility via Integrated Energy–Transport–Urban Infrastructure

Author:

Vilathgamuwa Mahinda,Mishra YateendraORCID,Yigitcanlar TanORCID,Bhaskar Ashish,Wilson Clevo

Abstract

The transport sector is one of the leading contributors of anthropogenic climate change. Particularly, internal combustion engine (ICE) dominancy coupled with heavy private motor vehicle dependency are among the main issues that need to be addressed immediately to mitigate climate change and to avoid consequential catastrophes. As a potential solution to this issue, electric vehicle (EV) technology has been put forward and is expected to replace a sizable portion of ICE vehicles in the coming decades. Provided that the source of electricity is renewable energy resources, it is expected that the wider uptake of EVs will positively contribute to the efforts in climate change mitigation. Nonetheless, wider EV uptake also comes with important issues that could challenge urban power systems. This perspective paper advocates system-level thinking to pinpoint and address the undesired externalities of EVs on our power grids. Given that it is possible to mobilize EV batteries to act as a source of mobile-energy supporting the power grid and the paper coins, and conceptualize a novel concept of Mobile-Energy-as-a-Service (MEaaS) for system-wide integration of energy, transport, and urban infrastructures for sustainable electromobility in cities. The results of this perspective include a discussion around the issues of measuring optimal real-time power grid operability for MEaaS, transport, power, and urban engineering aspects of MEaaS, flexible incentive-based price mechanisms for MEaaS, gauging the public acceptability of MEaaS based on its desired attributes, and directions for prospective research.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3