Abstract
To investigate the spatial-temporal effects of land-use changes on ecological quality and future trends, an integrated framework combining the Dyna-CLUE model and the remote sensing ecological index (RSEI) was developed. Land-use changes from 2000 to 2035 were simulated and projected under the current trend scenario (CTS), economic development scenario (EDS) and ecological protection scenario (EPS) in the Heihe River Basin, while the RSEI was predicted using the elastic net regression (machine learning method); finally, the predicted results were synthesized and analyzed. The results showed that forest, grassland and water were positively correlated with ecological quality, with the green space coverage under the CTS, EPS and EDS accounting for 34.15%, 70.65% and 34.72% of the total transferred land area, respectively. The increase in the area of build-up land and unutilized land was detrimental to ecological quality, with the area of building land in the EDS being 1.75 times larger than in the year 2000. The EDS contributes to the sustainable development of the upstream area and the EPS is more conducive to the midstream and downstream areas by limiting the expansion of build-up land and by developing unutilized land in a limited way to increase the area of green space after reconciling economic conditions. Projection results promote the rational allocation of various land-use types in the future (semi) arid region, such as artificial forestation, unutilized land development and restriction of urban expansion, and also lay the foundation for the formulation of policies such as water allocation and ecological protection to facilitate the sustainable development of regional society, economy and ecology.
Funder
National Natural Science Foundation of China
Strategic Priority Research Program of the Chinese Academy of Sciences
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献