Ultra-High-Molecular-Weight Polyethylene in Hip and Knee Arthroplasties

Author:

Hasegawa Masahiro1ORCID,Tone Shine1,Naito Yohei1,Sudo Akihiro1ORCID

Affiliation:

1. Department of Orthopaedic Surgery, Mie University Graduate School of Medicine, Tsu 514-8507, Japan

Abstract

Ultra-high-molecular-weight polyethylene (UHMWPE) wear and particle-induced osteolysis contribute to the failure of total hip arthroplasty (THA) and total knee arthroplasty (TKA). Highly crosslinked polyethylene (HXLPE) was developed in the late 1990s to reduce wear and has shown lower wear rates and loosening than conventional UHMWPE in THA. The irradiation dose for crosslinking is up to 100 kGy. However, during crosslinking, free radical formation induces oxidation. Using HXLPE in THA, the cumulative revision rate was determined to be significantly lower (6.2%) than that with conventional UHMWPE (11.7%) at a mean follow-up of 16 years, according to the Australian Orthopaedic Association National Joint Replacement Registry. However, HXLPE does not confer to TKA the same advantages it confers to THA. Several alternatives have been developed to prevent the release of free radicals and improve polymer mechanical properties, such as thermal treatment, phospholipid polymer 2-methacryloyloxyethyl phosphorylcholine grafting, remelting, and vitamin E addition. Among these options, vitamin E addition has reported good clinical results and wear resistance similar to that of HXLPE without vitamin E, as shown by short-term clinical studies of THA and TKA. This review aims to provide a comprehensive overview of the development and performance of UHMWPE in THA and TKA.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3