Affiliation:
1. Guangdong Provincial Engineering Technology Research Center of Key Material for High Performance Copper Clad Laminate, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
2. School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China
Abstract
The immobilization of homogeneous catalysts has always been a hot issue in the field of catalysis. In this paper, in an attempt to immobilize the homogeneous [Ni(Me6Tren)X]X (X = I, Br, Cl)-type catalyst with porous organic polymer (POP), the heterogeneous catalyst PBTP-Me6Tren(Ni) (POP-Ni) was designed and constructed by quaternization of the porous bromomethyl benzene polymer (PBTP) with tri[2-(dimethylamino)ethyl]amine (Me6Tren) followed by coordination of the Ni(II) Lewis acidic center. Evaluation of the performance of the POP-Ni catalyst found it was able to catalyze the CO2 cycloaddition with epichlorohydrin in N,N-dimethylformamide (DMF), affording 97.5% yield with 99% selectivity of chloropropylene carbonate under ambient conditions (80 °C, CO2 balloon). The excellent catalytic performance of POP-Ni could be attributed to its porous properties, the intramolecular synergy between Lewis acid Ni(II) and nucleophilic Br anion, and the efficient adsorption of CO2 by the multiamines Me6Tren. In addition, POP-Ni can be conveniently recovered through simple centrifugation, and up to 91.8% yield can be obtained on the sixth run. This research provided a facile approach to multifunctional POP-supported Ni(II) catalysts and may find promising application for sustainable and green synthesis of cyclic carbonates.
Funder
Applied Basic Research Foundation of Guangdong Province
Science Foundation for Distinguished Scholars of Dongguan University of Technology
Subject
General Materials Science