An Insight into the Data Structure of the Dynamic Batch Means Algorithm with Binary Tree Code

Author:

Chih Mingchang

Abstract

Batching is a well-known method used to estimate the variance of the sample mean in steady-state simulation. Dynamic batching is a novel technique employed to implement traditional batch means estimators without the knowledge of the simulation run length a priori. In this study, we reinvestigated the dynamic batch means (DBM) algorithm with binary tree hierarchy and further proposed a binary coding idea to construct the corresponding data structure. We also present a closed-form expression for the DBM estimator with binary tree coding idea. This closed-form expression implies a mathematical expression that clearly defines itself in an algebraic binary relation. Given that the sample size and storage space are known in advance, we can show that the computation complexity in the closed-form expression for obtaining the indexes c j ( k ) , i.e., the batch mean shifts s , is less than the effort in recursive expression.

Funder

Ministry of Science and Technology of the Republic of China (Taiwan)

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3