Effect of a Lateral Jet on the Turbulent Flow Characteristics of an Open Channel Flow with Rigid Vegetation

Author:

Teng Sufen,Feng Minquan,Chen Kailin,Wang WeijieORCID,Zheng Bangmin

Abstract

Aquatic vegetation can purify polluted bodies of water and beautify the environment, as well as alter the structure of water flow and affect the migration and diffusion of pollutants in bodies of water. Vegetation can significantly change the original water flow, especially in cases in which aquatic vegetation interacts with a jet. Characteristics of jet flow open channels without vegetation have been studied, but research on the characteristics of open-channel flows under the action of lateral jets and in the presence of vegetation are rare. High-frequency particle image velocimetry (PIV) was used to measure a lateral jet in water with rigid vegetation and our results were compared to the lateral jet flow field in water without vegetation. The results show that the vegetation arrangement and vegetation resistance cause significant changes. The presence of vegetation increased the surface velocity of the water, and the flow velocity decreased in the interior area of the vegetation and near the bottom of the water tank. The changes in flow velocity with changes in water depth displayed “S” type and anti-“S” type distributions, and the flow velocity of free layer was approximately logarithmic. Due to vegetation resistance and jet pressure differences, the lateral jet trajectory in water with vegetation was more likely to bend than in water without vegetation. The turbulence intensity and Reynolds stress had different distributions for water with and without vegetation. At the top of the vegetation and near the water surface, turbulent mixing of the water flow was strong, the flow velocity gradient was large and the turbulence intensity and the Reynolds stress reached their maxima. The effects of a lateral jet on an open-channel flow were compared for different vegetation conditions, revealing that a rhombic vegetation arrangement has a stronger deceleration effect than other arrangements. The theoretical results can be applied to wastewater discharge into vegetation channels.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3