Abstract
Retinitis pigmentosa (RP) is a family of inherited disorders caused by the progressive degeneration of retinal photoreceptors. There is no cure for RP, but recent research advances have provided promising results from many clinical trials. All these therapeutic strategies are focused on preserving existing photoreceptors or substituting light-responsive elements. Vision recovery, however, strongly relies on the anatomical and functional integrity of the visual system beyond photoreceptors. Although the retinal structure and optic pathway are substantially preserved at least in early stages of RP, studies describing the visual cortex status are missing. Using a well-established mouse model of RP, we analyzed the response of visual cortical circuits to the progressive degeneration of photoreceptors. We demonstrated that the visual cortex goes through a transient and previously undescribed alteration in the local excitation/inhibition balance, with a net shift towards increased intracortical inhibition leading to improved filtering and decoding of corrupted visual inputs. These results suggest a compensatory action of the visual cortex that increases the range of residual visual sensitivity in RP.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献