Muscimol Directly Activates the TREK-2 Channel Expressed in GABAergic Neurons through Its N-Terminus

Author:

Kim Eun-Jin,Kwon Oh-Sang,Hur Chang-GiORCID,Nyiramana Marie MerciORCID,Lee Dong-KunORCID,Hong Seong-Geun,Han Jaehee,Kang DawonORCID

Abstract

The two-pore domain K+ (K2P) channel, which is involved in setting the resting membrane potential in neurons, is an essential target for receptor agonists. Activation of the γ-aminobutyric acid (GABA) receptors (GABAAR and GABABR) reduces cellular excitability through Cl- influx and K+ efflux in neurons. Relatively little is known about the link between GABAAR and the K+ channel. The present study was performed to identify the effect of GABAR agonists on K2P channel expression and activity in the neuroblastic B35 cells that maintain glutamic acid decarboxylase (GAD) activity and express GABA. TASK and TREK/TRAAK mRNA were expressed in B35 cells with a high level of TREK-2 and TRAAK. In addition, TREK/TRAAK proteins were detected in the GABAergic neurons obtained from GABA transgenic mice. Furthermore, TREK-2 mRNA and protein expression levels were markedly upregulated in B35 cells by GABAAR and GABABR agonists. In particular, muscimol, a GABAAR agonist, significantly increased TREK-2 expression and activity, but the effect was reduced in the presence of the GABAAR antagonist bicuculine or TREK-2 inhibitor norfluoxetine. In the whole-cell and single-channel patch configurations, muscimol increased TREK-2 activity, but the muscimol effect disappeared in the N-terminal deletion mutant. These results indicate that muscimol directly induces TREK-2 activation through the N-terminus and suggest that muscimol can reduce cellular excitability by activating the TREK-2 channel and by inducing Cl- influx in GABAergic neurons.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3