Dimer Interface in Natural Variant NK1 Is Dispensable for HGF-Dependent Met Receptor Activation

Author:

Tahira Yumiko,Sakai KatsuyaORCID,Sato Hiroki,Imamura Ryu,Matsumoto KunioORCID

Abstract

NK1, a splicing variant of hepatocyte growth factor (HGF), binds to and activates Met receptor by forming an NK1 dimer and 2:2 complex with Met. Although the structural mechanism underlying Met activation by HGF remains incompletely resolved, it has been proposed that the NK1 dimer structure participates in this activation. We investigated the NK1 dimer interface’s role in Met activation by HGF. Because N127, V140, and K144 are closely involved in the head-to-tail NK1 dimer formation, mutant NK1 proteins with replacement of these residues by alanine were prepared. In Met tyrosine phosphorylation assays, N127-NK1, V140-NK1, and K144-NK1 showed 8.3%, 23.8%, and 52.2% activity, respectively, compared with wild-type NK1. Although wild-type NK1 promoted cell migration and scattering, N127-NK1, V140-NK1, and K144-NK1 hardly or marginally promoted them, indicating loss of activity of these mutant NK1 proteins to activate Met. In contrast, mutant HGFs (N127-HGF, V140-HGF, and K144-HGF) with the same amino acid replacements as in NK1 induced Met tyrosine phosphorylation and biological responses at levels comparable to those of wild-type HGF. These results indicate that the structural basis responsible for NK1-dependent Met dimer formation and activation differs from, or is at least distinguishable from, the structural basis responsible for HGF-dependent Met activation.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3