An In Vitro Comparative Study of the Effects of Tetrabromobisphenol A and Tetrabromobisphenol S on Human Erythrocyte Membranes—Changes in ATP Level, Perturbations in Membrane Fluidity, Alterations in Conformational State and Damage to Proteins

Author:

Jarosiewicz MonikaORCID,Duchnowicz PiotrORCID,Jarosiewicz PawełORCID,Huras Bogumiła,Bukowska BożenaORCID

Abstract

Brominated flame retardants (BFRs) are substances used to reduce the flammability of plastics. Among this group, tetrabormobisphenol A (TBBPA) is currently produced and used on the greatest scale, but due to the emerging reports on its potential toxicity, tetrabromobisphenol S (TBBPS)—a compound with a very similar structure—is used as an alternative. Due to the fact that the compounds in question are found in the environment and in biological samples from living organisms, including humans, and due to the insufficient toxicological knowledge about them, it is necessary to assess their impacts on living organisms and verify the validity of TBBPA replacement by TBBPS. The RBC membrane was chosen as the research model. This is a widely accepted research model for assessing the toxicity of xenobiotics, and it is the first barrier to compounds entering circulation. It was found that TBBPA and TBBPS caused increases in the fluidity of the erythrocyte membrane in their hydrophilic layer, and conformational changes to membrane proteins. They also caused thiol group elevation, an increase in lipid peroxidation (TBBPS only) and decreases in the level of ATP in cells. They also caused changes in the size and shape of RBCs. TBBPA caused changes in the erythrocyte membrane at lower concentrations compared to TBBPS at an occupational exposure level.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3