Zebrafish as a Model to Evaluate a CRISPR/Cas9-Based Exon Excision Approach as a Future Treatment Option for EYS-Associated Retinitis Pigmentosa

Author:

Schellens RenskeORCID,de Vrieze Erik,Graave Pam,Broekman Sanne,Nagel-Wolfrum Kerstin,Peters Theo,Kremer HannieORCID,Collin Rob W. J.ORCID,van Wijk ErwinORCID

Abstract

Retinitis pigmentosa (RP) is an inherited retinal disease (IRD) with an overall prevalence of 1 in 4000 individuals. Mutations in EYS (Eyes shut homolog) are among the most frequent causes of non-syndromic autosomal recessively inherited RP and act via a loss-of-function mechanism. In light of the recent successes for other IRDs, we investigated the therapeutic potential of exon skipping for EYS-associated RP. CRISPR/Cas9 was employed to generate zebrafish from which the region encompassing the orthologous exons 37-41 of human EYS (eys exons 40-44) was excised from the genome. The excision of these exons was predicted to maintain the open reading frame and to result in the removal of exactly one Laminin G and two EGF domains. Although the eysΔexon40-44 transcript was found at levels comparable to wild-type eys, and no unwanted off-target modifications were identified within the eys coding sequence after single-molecule sequencing, EysΔexon40-44 protein expression could not be detected. Visual motor response experiments revealed that eysΔexon40-44 larvae were visually impaired and histological analysis revealed a progressive degeneration of the retinal outer nuclear layer in these zebrafish. Altogether, the data obtained in our zebrafish model currently provide no indications for the skipping of EYS exons 37-41 as an effective future treatment strategy for EYS-associated RP.

Funder

Foundation Fighting Blindness

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3