Prenatal Molecular Hydrogen Administration Ameliorates Several Findings in Nitrofen-Induced Congenital Diaphragmatic Hernia

Author:

Miura Mayo,Imai Kenji,Tsuda Hiroyuki,Miki Rika,Tano Sho,Ito Yumiko,Hirako-Takamura Shima,Moriyama YoshinoriORCID,Ushida Takafumi,Iitani Yukako,Nakano-Kobayashi Tomoko,Toyokuni ShinyaORCID,Kajiyama HiroakiORCID,Kotani TomomiORCID

Abstract

Oxidative stress plays a pathological role in pulmonary hypoplasia and pulmonary hypertension in congenital diaphragmatic hernia (CDH). This study investigated the effect of molecular hydrogen (H2), an antioxidant, on CDH pathology induced by nitrofen. Sprague-Dawley rats were divided into three groups: control, CDH, and CDH + hydrogen-rich water (HW). Pregnant dams of CDH + HW pups were orally administered HW from embryonic day 10 until parturition. Gasometric evaluation and histological, immunohistochemical, and real-time polymerase chain reaction analyses were performed. Gasometric results (pH, pO2, and pCO2 levels) were better in the CDH + HW group than in the CDH group. The CDH + HW group showed amelioration of alveolarization and pulmonary artery remodeling compared with the CDH group. Oxidative stress (8-hydroxy-2′-deoxyguanosine-positive-cell score) in the pulmonary arteries and mRNA levels of protein-containing pulmonary surfactant that protects against pulmonary collapse (surfactant protein A) were significantly attenuated in the CDH + HW group compared with the CDH group. Overall, prenatal H2 administration improved respiratory function by attenuating lung morphology and pulmonary artery thickening in CDH rat models. Thus, H2 administration in pregnant women with diagnosed fetal CDH might be a novel antenatal intervention strategy to reduce newborn mortality due to CDH.

Funder

(JSPS) KAKENHI grant numbers

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3