New Glycosylated Dihydrochalcones Obtained by Biotransformation of 2′-Hydroxy-2-methylchalcone in Cultures of Entomopathogenic Filamentous Fungi

Author:

Krawczyk-Łebek AgnieszkaORCID,Dymarska MonikaORCID,Janeczko TomaszORCID,Kostrzewa-Susłow Edyta

Abstract

Flavonoids, including chalcones, are more stable and bioavailable in the form of glycosylated and methylated derivatives. The combined chemical and biotechnological methods can be applied to obtain such compounds. In the present study, 2′-hydroxy-2-methylchalcone was synthesized and biotransformed in the cultures of entomopathogenic filamentous fungi Beauveria bassiana KCH J1.5, Isaria fumosorosea KCH J2 and Isaria farinosa KCH J2.6, which have been known for their extensive enzymatic system and ability to perform glycosylation of flavonoids. As a result, five new glycosylated dihydrochalcones were obtained. Biotransformation of 2′-hydroxy-2-methylchalcone by B. bassiana KCH J1.5 resulted in four glycosylated dihydrochalcones: 2′-hydroxy-2-methyldihydrochalcone 3′-O-β-d-(4″-O-methyl)-glucopyranoside, 2′,3-dihydroxy-2-methyldihydrochalcone 3′-O-β-d-(4″-O-methyl)-glucopyranoside, 2′-hydroxy-2-hydroxymethyldihydrochalcone 3′-O-β-d-(4″-O-methyl)-glucopyranoside, and 2′,4-dihydroxy-2-methyldihydrochalcone 3′-O-β-d-(4″-O-methyl)-glucopyranoside. In the culture of I. fumosorosea KCH J2 only one product was formed—3-hydroxy-2-methyldihydrochalcone 2′-O-β-d-(4″-O-methyl)-glucopyranoside. Biotransformation performed by I. farinosa KCH J2.6 resulted in the formation of two products: 2′-hydroxy-2-methyldihydrochalcone 3′-O-β-d-(4″-O-methyl)-glucopyranoside and 2′,3-dihydroxy-2-methyldihydrochalcone 3′-O-β-d-(4″-O-methyl)-glucopyranoside. The structures of all obtained products were established based on the NMR spectroscopy. All products mentioned above may be used in further studies as potentially bioactive compounds with improved stability and bioavailability. These compounds can be considered as flavor enhancers and potential sweeteners.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3