Cyclopentanone Derivative Attenuates Memory Impairment by Inhibiting Amyloid Plaques Formation in the 5xFAD Mice

Author:

Ullah RahimORCID,Ali GowharORCID,Khan Ajmal,Ahmad SajjadORCID,Al-Harrasi AhmedORCID

Abstract

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder. This study was designed to investigate the effects of cyclopentanone derivative i.e., 2-(hydroxyl-(3-nitrophenyl)methyl)cyclopentanone (3NCP) on behavior, amyloid β (Aβ) plaque deposition, and βAPP cleaving enzyme-1 (BACE-1) expression in the 5xFAD mouse brain. In this study, computational studies were conducted to predict the binding mode of the 3NCP with target sites of the β-secretase. In vivo studies were performed on the 5xFAD mice model of AD using different behavioral test models like light/dark box, elevated plus maze (EPM), and the Barnes maze tests for the assessment of anxiety, spatial learning and memory. The thioflavin-S staining, immunohistochemistry (IHC), and RT-PCR studies were carried out to find the effect of the 3NCP on the β-amyloid plaques formation and BACE-1 expression. The results of the computational studies showed that the 3NCP has excellent binding affinities for beta-secretase. The light/dark box study depicted that the 3NCP does not cause anxiety. The 3NCP treatment effects in the EPM and Barnes maze tests showed a significant effect on learning and memory. Furthermore, the results of the thioflavin staining and IHC revealed that the 3NCP significantly reduced the formation of the beta-amyloid plaques in brain tissues. Moreover, the RT-PCR study showed that 3NCP significantly reduced the BACE-1 expression in the brain. Conclusively, the results of the current study demonstrate that the 3NCP may be a potential candidate for AD treatment in the future.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3