A New Method for Spatial Estimation of Water Quality Using an Optimal Virtual Sensor Network and In Situ Observations: A Case Study of Chemical Oxygen Demand

Author:

Zhao Na123ORCID

Affiliation:

1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100101, China

3. Jiangsu Center for Collaborative Innovation in Geographic Information Resource Development and Application, Nanjing 210023, China

Abstract

Accurate water quality estimation is important for water environment monitoring and water resource management and has emerged as a pivotal aspect of ecological rehabilitation and sustainable development. However, due to the strong spatial heterogeneity of water quality parameters, it is still challenging to obtain highly accurate spatial patterns of them. Taking chemical oxygen demand as an example, this study proposes a novel estimation method for generating highly accurate chemical oxygen demand fields in Poyang Lake. Specifically, based on the different water levels and monitoring sites in Poyang Lake, an optimal virtual sensor network was first established. A Taylor expansion-based method with integration of spatial correlation and spatial heterogeneity was developed by considering environmental factors, the optimal virtual sensor network, and existing monitoring stations. The proposed approach was evaluated and compared with other approaches using a leave-one cross-validation process. Results show that the proposed method exhibits good performance in estimating chemical oxygen demand fields in Poyang Lake, with mean absolute error improved by 8% and 33%, respectively, on average, when compared with classical interpolators and remote sensing methods. In addition, the applications of virtual sensors improve the performance of the proposed method, with mean absolute error and root mean squared error values reduced by 20% to 60% over 12 months. The proposed method provides an effective tool for estimating highly accurate spatial fields of chemical oxygen demand concentrations and could be applied to other water quality parameters.

Funder

National Program of National Natural Science Foundation of China

Major Program of National Natural Science Foundation of China

Key Project of Innovation LREIS

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3