EEG-Based Eye Movement Recognition Using Brain–Computer Interface and Random Forests

Author:

Antoniou Evangelos,Bozios Pavlos,Christou VasileiosORCID,Tzimourta Katerina D.ORCID,Kalafatakis Konstantinos,G. Tsipouras Markos,Giannakeas NikolaosORCID,Tzallas Alexandros T.ORCID

Abstract

Discrimination of eye movements and visual states is a flourishing field of research and there is an urgent need for non-manual EEG-based wheelchair control and navigation systems. This paper presents a novel system that utilizes a brain–computer interface (BCI) to capture electroencephalographic (EEG) signals from human subjects while eye movement and subsequently classify them into six categories by applying a random forests (RF) classification algorithm. RF is an ensemble learning method that constructs a series of decision trees where each tree gives a class prediction, and the class with the highest number of class predictions becomes the model’s prediction. The categories of the proposed random forests brain–computer interface (RF-BCI) are defined according to the position of the subject’s eyes: open, closed, left, right, up, and down. The purpose of RF-BCI is to be utilized as an EEG-based control system for driving an electromechanical wheelchair (rehabilitation device). The proposed approach has been tested using a dataset containing 219 records taken from 10 different patients. The BCI implemented the EPOC Flex head cap system, which includes 32 saline felt sensors for capturing the subjects’ EEG signals. Each sensor caught four different brain waves (delta, theta, alpha, and beta) per second. Then, these signals were split in 4-second windows resulting in 512 samples per record and the band energy was extracted for each EEG rhythm. The proposed system was compared with naïve Bayes, Bayes Network, k-nearest neighbors (K-NN), multilayer perceptron (MLP), support vector machine (SVM), J48-C4.5 decision tree, and Bagging classification algorithms. The experimental results showed that the RF algorithm outperformed compared to the other approaches and high levels of accuracy (85.39%) for a 6-class classification are obtained. This method exploits high spatial information acquired from the Emotiv EPOC Flex wearable EEG recording device and examines successfully the potential of this device to be used for BCI wheelchair technology.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3