Characterization of a New Toti-like Virus in Sea Bass, Dicentrarchus labrax

Author:

Louboutin Lénaïg1ORCID,Cabon Joëlle1,Beven Véronique2,Hirchaud Edouard2,Blanchard Yannick2,Morin Thierry1

Affiliation:

1. Unité Virologie, Immunologie et Écotoxicologie des Poissons, Laboratoire de Ploufragan-Plouzané-Niort, National Infrastructure Emerg’In, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), 29280 Plouzané, France

2. Unité Génétique virale et biosécurité, Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), 22440 Ploufragan, France

Abstract

The European sea bass Dicentrarchus labrax is the main species reared in Mediterranean aquaculture. Its larval stage, which is very sensitive and highly affected by sanitary and environmental conditions, is particularly scrutinized in hatcheries. Recently, a Mediterranean sea bass farm had to deal with an abnormal increase in mortality, especially between 20 and 35 days post-hatching (dph). Biological investigations led to the observation of cytopathic effects on three different fish cell lines after almost 3 weeks of culture at 14 °C in contact with homogenized affected larvae, suggesting the presence of a viral agent. High-throughput sequencing revealed a 6818-nucleotide-long RNA genome with six putative ORFs, corresponding to the organization of viruses belonging to the Totiviridae family. This genome clustered with the newly described and suggested Pistolvirus genus, sharing 45.5% to 37.2% nucleotide identity with other piscine toti-like viruses such as Cyclopterus lumpus toti-like virus (CLuTLV) or piscine myocarditis virus (PMCV), respectively. Therefore, we propose to name this new viral agent sea bass toti-like virus (SBTLV). Specific real-time RT-PCR confirmed the presence of the viral genome in the affected larval homogenate from different production batches and the corresponding cell culture supernatant. Experimental infections performed on sea bass fingerlings did not induce mortality, although the virus could be detected in various organs and a specific immune response was developed. Additional studies are needed to understand the exact involvement of this virus in the mortality observed in hatcheries and the potential associated cofactors.

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Reference42 articles.

1. Kibenge, F.S.B., and Godoy, M.G. (2016). Aquaculture Virology, Academic Press.

2. Mapping the knowledge of the main diseases affecting sea bass and sea bream in Mediterranean;Muniesa;Transbound. Emerg. Dis.,2020

3. Mikalsen, A.B., Haugland, Ø., and Evensen, Ø. (2016). Aquaculture Virology, Elsevier.

4. Potential origins of fish toti-like viruses in invertebrates;Tighe;J. Gen. Virol.,2022

5. (2019). Virus Taxonomy: The Classification and Nomenclature of Viruses—The Online (10th) Report of the ICTV, International Committee on Taxonomy of Viruses (ICTV). [10th ed.].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3