Hierarchical Dynamic Bayesian Network-Based Fatigue Crack Propagation Modeling Considering Initial Defects

Author:

Xu YangORCID,Zhu Bin,Zhang Zheng,Chen Jiahui

Abstract

Orthotropic steel decks (OSDs) are inevitably subjected to fatigue damage caused by cycled vehicle loads in long-span bridges. This study establishes a probabilistic analysis framework integrating the dynamic Bayesian network (DBN) and fracture mechanics to model the fatigue crack propagation considering mutual correlations among multiple fatigue details. Both the observations of fatigue crack length from field inspection and monitoring data of vehicle loads from the weight-in-motion (WIM) system are utilized. First, fracture mechanics-based uncertainty analysis is performed to determine the multiple uncertainty sources in the Paris crack propagation model, material property, and observation data of crack length. The uncertainty of monitoring data of vehicle loads is ignored because of its high accuracy; consequently, the vehicle-load-related uncertainty is spontaneously ignored, which is also demonstrated to be very small on the investigated actual bridges. Second, a hierarchical DBN model is introduced to construct mutual dependencies among various uncertainties and intra-correlations in the propagation process of multiple fatigue cracks at different components. Third, a stochastic traffic model is established based on the WIM monitoring data and multi-scale finite element analysis via substructure techniques to determine the probability distribution of vehicle-load-related parameters. After variable discretization, a refined exact inference algorithm in a forward–backward–forward manner is adopted to estimate the posterior distribution of equivalent initial crack length and update the established DBN model. Finally, the proposed method is demonstrated by a numerical case study and a typical application on an actual cable-stayed bridge with steel box girders using OSDs in China. The results show that the probability distribution of equivalent initial crack size can be spontaneously derived with a larger mean value than the results of conventional empirical analysis. Furthermore, the component-level fatigue reliability is tracked and predicted based on the established crack propagation model.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Heilongjiang Province Postdoctoral Science Foundation

China Railway Construction Corporation Limited

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference32 articles.

1. A Critical Analysis of Crack Propagation Laws

2. Reliability based assessment of welded joints using alternative fatigue failure functions;Ayala-Uraga;Proceedings of the International Conference on Structural Safety and Reliability ICOSSAR,2005

3. Reliability-based management of inspection, maintenance and repair of offshore structures

4. Fatigue reliability-based assessment of welded joints applying consistent fracture mechanics formulations

5. Detection of line weld defects based on multiple thresholds and support vector machine;Wang;NDT E Int.,2008

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3