Accuracy of Autonomous Artificial Intelligence-Based Diabetic Retinopathy Screening in Real-Life Clinical Practice

Author:

Riotto Eleonora1ORCID,Gasser Stefan1,Potic Jelena1,Sherif Mohamed1,Stappler Theodor1,Schlingemann Reinier1,Wolfensberger Thomas1,Konstantinidis Lazaros1

Affiliation:

1. Hôpital Jules Gonin, 1004 Lausanne, Switzerland

Abstract

Background: In diabetic retinopathy, early detection and intervention are crucial in preventing vision loss and improving patient outcomes. In the era of artificial intelligence (AI) and machine learning, new promising diagnostic tools have emerged. The IDX-DR machine (Digital Diagnostics, Coralville, IA, USA) represents a diagnostic tool that combines advanced imaging techniques, AI algorithms, and deep learning methodologies to identify and classify diabetic retinopathy. Methods: All patients that participated in our AI-based DR screening were considered for this study. For this study, all retinal images were additionally reviewed retrospectively by two experienced retinal specialists. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were calculated for the IDX-DR machine compared to the graders’ responses. Results: We included a total of 2282 images from 1141 patients who were screened between January 2021 and January 2023 at the Jules Gonin Eye Hospital in Lausanne, Switzerland. Sensitivity was calculated to be 100% for ‘no DR’, ‘mild DR’, and ‘moderate DR’. Specificity for no DR’, ‘mild DR’, ‘moderate DR’, and ‘severe DR’ was calculated to be, respectively, 78.4%, 81.2%, 93.4%, and 97.6%. PPV was calculated to be, respectively, 36.7%, 24.6%, 1.4%, and 0%. NPV was calculated to be 100% for each category. Accuracy was calculated to be higher than 80% for ‘no DR’, ‘mild DR’, and ‘moderate DR’. Conclusions: In this study, based in Jules Gonin Eye Hospital in Lausanne, we compared the autonomous diagnostic AI system of the IDX-DR machine detecting diabetic retinopathy to human gradings established by two experienced retinal specialists. Our results showed that the ID-x DR machine constantly overestimates the DR stages, thus permitting the clinicians to fully trust negative results delivered by the screening software. Nevertheless, all fundus images classified as ‘mild DR’ or greater should always be controlled by a specialist in order to assert whether the predicted stage is truly present.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3