Accuracy Validation of the New Barrett True Axial Length Formula and the Optimized Lens Factor Using Sum-of-Segment Biometry

Author:

Miyamoto Sumitaka1ORCID,Kamiya Kazutaka2

Affiliation:

1. Aira Miyamoto Eye Clinic, Kagoshima 899-5213, Japan

2. Visual Physiology, School of Allied Health Sciences, Kitasato University, Kanagawa 252-0373, Japan

Abstract

Objectives: This study aims to verify the accuracy of a new calculation formula, Barrett true axial length formula (T-AL), and the optimized lens factor (LF) for predicting postoperative refraction after cataract surgery. Methods: We included 156 Japanese patients who underwent cataract surgery using Clareon monofocal intraocular lenses at our clinic between January 2022 and June 2023. Postoperative spherical equivalent was calculated using subjective refraction values obtained 1 month post-surgery. The LFs were optimized so that the mean prediction error (PE) of each calculation formula was zero (zero optimization). We calculated the mean absolute PE (MAE) to assess accuracy and used a Friedman test for statistical comparisons. The accuracy of T-AL and the optimized LFs was compared with that of the conventional Barrett Universal II formula for ARGOS (AR-B) and OA-2000 (OA-B) with equivalent refractive index. Results: For T-AL, AR-B, and OA-B, the MAEs ± standard deviations were 0.225 ± 0.179, 0.219 ± 0.168, and 0.242 ± 0.206 D, respectively. The Friedman test showed no statistically significant differences among the three groups. The device-optimized LFs were 2.248–2.289 (T-AL), 2.236–2.246 (AR-B), and 2.07–2.08 (OA-B); the corresponding zero-optimized LFs were 2.262–2.287 (T-AL), 2.287–2.303 (AR-B), and 2.160–2.170 (OA-B). Conclusion: There were no significant differences in prediction accuracy among the formulas. However, the accuracy of LF optimization varied by device, with T-AL being closest to the value under zero optimization. This suggests that T-AL is clinically useful for predicting an accurate postoperative refraction without zero optimization.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3