Deep Learning-Based Transfer Learning for Classification of Skin Cancer

Author:

Jain SatinORCID,Singhania UditORCID,Tripathy Balakrushna,Nasr Emad AbouelORCID,Aboudaif Mohamed K.ORCID,Kamrani Ali K.

Abstract

One of the major health concerns for human society is skin cancer. When the pigments producing skin color turn carcinogenic, this disease gets contracted. A skin cancer diagnosis is a challenging process for dermatologists as many skin cancer pigments may appear similar in appearance. Hence, early detection of lesions (which form the base of skin cancer) is definitely critical and useful to completely cure the patients suffering from skin cancer. Significant progress has been made in developing automated tools for the diagnosis of skin cancer to assist dermatologists. The worldwide acceptance of artificial intelligence-supported tools has permitted usage of the enormous collection of images of lesions and benevolent sores approved by histopathology. This paper performs a comparative analysis of six different transfer learning nets for multi-class skin cancer classification by taking the HAM10000 dataset. We used replication of images of classes with low frequencies to counter the imbalance in the dataset. The transfer learning nets that were used in the analysis were VGG19, InceptionV3, InceptionResNetV2, ResNet50, Xception, and MobileNet. Results demonstrate that replication is suitable for this task, achieving high classification accuracies and F-measures with lower false negatives. It is inferred that Xception Net outperforms the rest of the transfer learning nets used for the study, with an accuracy of 90.48. It also has the highest recall, precision, and F-Measure values.

Funder

Researcher Support Program, King Saud University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference49 articles.

1. Sun exposure and non-melanocytic skin cancer

2. The epidemiology of UV induced skin cancer

3. Cancer Facts and Figureshttps://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf

4. Hematology: Basic Principles and Practice;Silberstein,2017

5. Skin cancer detection: Applying a deep learning based model driven architecture in the cloud for classifying dermal cell images

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3