Review of Machine Learning Techniques for Power Quality Performance Evaluation in Grid-Connected Systems

Author:

Kuppusamy Ramya1,Nikolovski Srete2ORCID,Teekaraman Yuvaraja3ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Sri Sairam College of Engineering, Bangalore 562 106, India

2. EPIK d.o.o. Nasice, 31500 Našice, Croatia

3. School of Engineering and Computing, American International University (AIU), Al Jahra 003200, Kuwait

Abstract

In the current energy usage scenario, the demands on energy load and the tariffs on the usage of electricity are two main areas that require a lot of attention. Energy forecasting is an ideal solution that would help us to better understand future needs and formulate solutions accordingly. Some important factors to investigate are the quantity and quality of smart grids as they are significantly influenced by the transportation, storage, and load management of energy. This research work is a review of various machine learning algorithms for energy grid applications like energy consumption, production, energy management, design, vehicle-to-grid transfers, and demand response. Ranking is performed with the help of key parameters and is evaluated using the Rapid Miner tool. The proposed manuscript uses various machine learning techniques for the evaluation of power quality performance to validate an efficient algorithm ranking in a grid-connected system for energy management applications. The use of renewable energy resources in grid-connected systems is more common in modern power systems. Universally, the energy usage sector (commercial and non-commercial) is undergoing an increase in demand for energy utilization that has substantial economic and ecological consequences. To overcome these issues, an integrated, ecofriendly, and smart system that meets the high energy demands is implemented in various buildings and other grid-connected applications. Among various machine learning techniques, an evaluation of seven algorithms—Naïve Bayes, artificial neural networks, linear regression, support vector machine, Q-learning, Gaussian mixture model, and principle component analysis—was conducted to determine which algorithm is the most effective in predicting energy balance. Among these algorithms, the decision tree, linear regression, and neural networks had more accurate results than the other algorithms used. As a result of this research, a proposal for energy forecast, energy balance, and management was compiled. A comparative statement of various algorithms concludes with results which suit energy management applications with high accuracy and low error rates.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3