A Data-Driven Comprehensive Battery SOH Evaluation and Prediction Method Based on Improved CRITIC-GRA and Att-BiGRU

Author:

Liu Peng1,Liu Cheng1,Wang Zhenpo1,Wang Qiushi1ORCID,Han Jinlei2,Zhou Yapeng3

Affiliation:

1. National Engineering Research Center of Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Fawer Smarter Energy Technology Company Limited, Jilin 130062, China

3. China Merchants Testing Vehicle Technology Research Institute Co., Ltd., Chongqing 401329, China

Abstract

The state-of-health (SOH) of lithium-ion batteries has a significant impact on the safety and reliability of electric vehicles. However, existing research on battery SOH estimation mainly relies on laboratory battery data and does not take into account the multi-faceted nature of battery aging, which limits the comprehensive and effective evaluation and prediction of battery health in real-world applications. To address these limitations, this study utilizes real electric vehicle operational data to propose a comprehensive battery health evaluation indicator and a deep learning predictive model. In this study, the battery capacity, ohmic resistance, and maximum output power were initially extracted as individual health indicators from actual vehicle operation data. Subsequently, a methodology that combines the improved criteria importance through inter-criteria correlation (CRITIC) weighting method with the grey relational analysis (GRA) method is employed to construct the comprehensive battery health evaluation indicator. Finally, a prediction model based on the attention mechanism and the bidirectional gated recurrent unit (Att-BiGRU) is proposed to forecast the comprehensive evaluation indicator. Experimental results using real-world vehicle data demonstrate that the proposed comprehensive health indicator can provide a thorough representation of the battery health state. Furthermore, the Att-BiGRU prediction model outperforms traditional machine learning models in terms of prediction accuracy.

Funder

Jilin Scientific and Technological Development Program

Chongqing Doctoral Through-Train Research Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3