Sustainable Integration of Solar Energy, Behavior Change, and Recycling Practices in Educational Institutions: A Holistic Framework for Environmental Conservation and Quality Education

Author:

Altassan Abdulrahman1

Affiliation:

1. College of Architecture and Planning, King Saud University, Riyadh 57448, Saudi Arabia

Abstract

Environmental sustainability in educational institutions is a critical concern for addressing global challenges. This research presents a comprehensive framework for sustainable energy conservation, behavior change, and recycling practices in schools, with the aim of fostering environmental consciousness among students and enhancing overall educational quality. The framework integrates solar photovoltaic (PV) systems, encouraging students’ participation in their maintenance while repurposing collected water for plant irrigation and using organic waste as a natural fertilizer. By creating a micro-ecosystem within schools, the approach cultivates a generation of environmentally aware individuals who actively contribute to environmental stewardship. The framework aligns with Saudi Arabia’s 2030 vision of improving quality of life and increasing green surfaces. It promotes environmental awareness, facilitates clean energy adoption, and reduces operational costs. The role of municipalities and recycling bodies is crucial for its successful execution, involving waste management support, educational programs, and regulatory compliance. Through collaboration between schools, municipalities, and recycling bodies, the framework aims to create a culture of sustainability. It envisions students as advocates, gaining experiential knowledge in renewable energy technologies and waste management. This research offers a roadmap for schools to integrate solar energy, behavior change, and recycling practices, positioning them as leaders in environmental stewardship. The framework underscores the importance of collaborative efforts, financial support, and awareness campaigns. By embracing this comprehensive approach, schools can play a pivotal role in mitigating climate change, promoting sustainable living, and inspiring a brighter future for generations to come.

Funder

King Saud University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference50 articles.

1. U.S. Environmental Protection Agency (2023, July 02). Energy Efficiency in K-12 Schools. Local Government Climate and Energy Strategy Series, Available online: https://www.epa.gov/sites/default/files/2015-08/documents/k-12_guide.pdf.

2. Sensor impacts on building and HVAC controls: A critical review for building energy performance;Bae;Adv. Appl. Energy,2021

3. Carbon emission of global construction sector;Huang;Renew. Sustain. Energy Rev.,2018

4. IEA (2023, June 21). Buildings, IEA, Paris. Available online: https://www.iea.org/fuels-and-technologies/solar.

5. Learn to conserve: The effects of in-school energy education on at-home electricity consumption;Gill;Energy Policy,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3