Enhancing Rice Leaf Disease Classification: A Customized Convolutional Neural Network Approach

Author:

Abasi Ammar Kamal1ORCID,Makhadmeh Sharif Naser2,Alomari Osama Ahmad3,Tubishat Mohammad4,Mohammed Husam Jasim5ORCID

Affiliation:

1. Department of Machine Learning, Mohamed Bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi P.O. Box 131818, United Arab Emirates

2. Department of Data Science and Artificial Intelligence, University of Petra, Amman P.O. Box 11196, Jordan

3. Department of Computer Science and Information Technology, College of Engineering, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates

4. College of Technological Innovation, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates

5. Department of Business Administration, College of Administration and Financial Sciences, Imam Ja’afar Al-Sadiq University, Baghdad 10001, Iraq

Abstract

In modern agriculture, correctly identifying rice leaf diseases is crucial for maintaining crop health and promoting sustainable food production. This study presents a detailed methodology to enhance the accuracy of rice leaf disease classification. We achieve this by employing a Convolutional Neural Network (CNN) model specifically designed for rice leaf images. The proposed method achieved an accuracy of 0.914 during the final epoch, demonstrating highly competitive performance compared to other models, with low loss and minimal overfitting. A comparison was conducted with Transfer Learning Inception-v3 and Transfer Learning EfficientNet-B2 models, and the proposed method showed superior accuracy and performance. With the increasing demand for precision agriculture, models like the proposed one show great potential in accurately detecting and managing diseases, ultimately leading to improved crop yields and ecological sustainability.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3