Pixel-Based Soil Loss Estimation and Prioritization of North-Western Himalayan Catchment Based on Revised Universal Soil Loss Equation (RUSLE)

Author:

Gupta Shishant1,Ojha Chandra Shekhar Prasad1,Singh Vijay P.2,Adeloye Adebayo J.3ORCID,Jain Sanjay K.4

Affiliation:

1. Department of Civil Engineering, Indian Institute of Technology, Roorkee 247667, India

2. Department of Biological & Agricultural Engineering, and Department of Civil & Environmental Engineering, Texas A&M University, College Station, TX 77843, USA

3. Institute of Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS, UK

4. Water Resources Systems Division, National Institute of Hydrology, Roorkee 247667, India

Abstract

Land degradation is a noteworthy environmental risk causing water quality issues, reservoir siltation, and loss of valuable arable lands, all of which negate sustainable development. Analysis of the effect of land use changes on erosion rate and sediment yield is particularly useful to identify critical areas and define catchment-area treatment plans. This study utilized remote sensing and geographical information system/science (GIS) techniques combined with the Revised Universal Soil Loss Equation (RUSLE) on a pixel basis to estimate soil loss over space and time and prioritized areas for action. The methodology was applied to the Sutlej catchment from the perspective of sedimentation of the Bhakra reservoir, which is leading to the loss of active storage capacity and performance and of the safety and efficiency of many existing hydroelectric projects in the Sutlej and its tributaries that drain the Himalayas. Soil loss estimation using RUSLE was first calibrated using data from three sites, and the calibrated model was then used to estimate catchment soil loss for 21 years (1995–2015). The number of land use/land cover (LULC) classes as 14 and the C factor as 0.63 for agriculture land were optimized using the observed data for the Sutlej catchment. Further, the linkage between soil erosivity and annual precipitation was also established. It was concluded that extensive control treatment would be necessary from the soil and water conservation point of view. Structures like check dams, terraces, bunds, and diversion drains in the upstream can overcome the issue of fragmentation of soil in the Sutlej catchment.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3