Study on Time-Dependent Failure Mechanisms and CBAG Differential Support Technology of Roadway in Steeply Inclined Coal Seam

Author:

Xie Zhengzheng1ORCID,Wang Jin1ORCID,Zhang Nong12ORCID,Guo Feng1,He Zhe1,Xiang Zhe1,Zhang Chenghao3

Affiliation:

1. State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China

2. School of Civil Engineering, Xuzhou University of Technology, Xuzhou 221018, China

3. Laboratory of Geotechnics, Department of Civil Engineering, Ghent University, Zwijnaarde, 9052 Gent, Belgium

Abstract

In Sichuan Province, China, most coal seams that are mined are steeply inclined; their roadways’ surrounding rocks are asymmetric, with non-equilibrium deformations and unstable anchorage structures, thus making major safety hazards highly likely. Using field observations and a universal distinct element code (UDEC) numerical simulation method, this paper analyzed the time-dependent failure of the ventilation roadway of Working Face 1961 of the Zhaojiaba Mine, revealing the preconditions for such damage and a bidirectional deterioration mechanism for the deformation as well as stress of surrounding rocks. Moreover, this paper built an anchorage mechanical model for the thick layer of the roadway roof and proposed a cross-boundary anchor-grouting (CBAG) differential support technique. Calculations proved that the new support was particularly effective in restraining the expansion of tension cracks, thus preventing the slipping and dislocation deformations of rock masses on the curved roof side. The feedback of engineering applications showed that the maximum development depths of cracks in the arc roof and straight inclined roof of the roadway 150 m behind the working face are only 1.5 m and 1.10 m, decreasing by 61.3% and 47.6%, respectively, compared with the primary support. The proposed technology offers an overall thick-layer bearing structure for the surrounding rocks of roadways, effectively restraining the non-equilibrium large deformations of roadways in steeply inclined coal seams.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3