Removable Pressure-Sensitive Adhesives Based on Acrylic Telomer Syrups

Author:

Weisbrodt Mateusz1ORCID,Kowalczyk Agnieszka1ORCID

Affiliation:

1. Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Piastów Ave. 42, 71-065 Szczecin, Poland

Abstract

Removable pressure-sensitive adhesives (PSAs) are used in the production of self-adhesive materials such as protective films, masking tapes or biomedical electrodes. This work presents a new and environmentally friendly method of obtaining this type of adhesive materials, i.e., photochemically induced free radical telomerization. Adhesive binders to removable PSAs, i.e., the photoreactive acrylic telomer syrups (ATS) were prepared from n-butyl acrylate, acrylic acid, and 4-acrylooxybenzophenone. Tetrabromomethane (CBr4) or bromotrichloromethane (CBrCl3) were used as the telogens. ATS was modified with unsaturated polybutadiene resin and a radical photoinitiator. Adhesive compositions were coated onto a carrier and UV cross-linked. The effects of the chemical nature of telomers (i.e., terminal Br or Cl atoms) and their molecular weight (K-value), as well as the cross-linking degree on adhesive properties of PSAs, were studied. It was found that with the increase in telogen content in the system, the dynamic viscosity of ATS and K-value of acrylic telomers decrease, and the conversion of monomers increases. CBr4 turned out to be a more effective chain transfer agent than CBrCl3. Moreover, telomers with terminal Br-atoms (7.5 mmol of CBr4), due to slightly lower molecular weights and viscosity, showed a higher photocrosslinking ability (which was confirmed by high cohesion results at 20 and 70 °C, i.e., >72 h). Generally, higher values of the temperature at which adhesive failure occurred were noted for PSAs based on ATS with lower telogen content (7.5 mmol), both CBr4 and CBrCl3. The excellent result for removable PSA was obtained in the case of telomer syrup Br-7.5 crosslinked with a 5 J/cm2 dose of UV-radiation (adhesion ca.1.3 N/25 mm, and cohesion > 72 h).

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3