Study on Verification Approach and Multicontact Points Issue When Modeling Cyperus esculentus Seeds Based on DEM

Author:

Xu Tianyue1ORCID,Zhang Ruxin1,Jiang Xinming1,Feng Weizhi1,Wang Yang2,Wang Jingli1

Affiliation:

1. College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China

2. College of Biological and Agricultural Engineering, Jilin University, Changchun 130021, China

Abstract

In this paper, the Multisphere (MS) models of three varieties of Cyperus esculentus seeds are modeled based on DEM. In addition, for comparison, other particle models based on automatic filing in EDEM software are also introduced. Then, the direct shear test, piling test, bulk density test, and rotating hub test are used to verify the feasibility of particle models of Cyperus esculentus seeds that we proposed. By comparing the simulated results and experimental results, combined with the CPU computation time, the proposed particle models achieved better simulation accuracy with fewer filing spheres. According to simulation results, some limitation was present when using one single verification test; varieties of verification tests used could improve the verification reliability, and a more appropriate particle model could be selected. Additionally, the issue of multicontact points in the MS model was studied. The Hertz Mindlin (no slip) (HM) model and Hertz Mindlin new restitution (HMNR) model were both considered in simulations for comparison. The rotating hub test and particle–wall impact test were used, and the influences of multiple contact points on the motion behavior of individual particles and particle assemblies were analyzed. Simulation results showed that the multiple contact points affected the motion behavior of individual particles; in contrast, the influence of multiple contact points on the motion behavior of the particle assembly was insignificant. Moreover, the relationships between moisture content of seeds and Young’s modulus, Young’s modulus, and the number of contact points were also considered. Young’s modulus decreased with increasing moisture content. The number of contact points increased with a decreasing Young’s modulus.

Funder

Jilin Provincial Science and Technology Development Plan Project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3