Waste Biomass Based Carbon Aerogels Prepared by Hydrothermal-carbonization and Their Ethanol Cracking Performance for H2 Production

Author:

Zhang Jialin1,Hu Song12ORCID,Ding Yong3,Huang Rui2,Ren Qiangqiang1,Su Sheng12,Wang Yi12,Jiang Long12,Xu Jun12,Xiang Jun12ORCID

Affiliation:

1. State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, China

3. China Energy Jiangxi New Energy Industry Company Ltd., Nanchang 330000, China

Abstract

Biomass occupies a significant proportion of municipal solid waste. For the high-value processing of waste biomass, a hydrothermal-carbonization method was chosen because of the advantages of effective and mild conditions. Four typical types of waste biomass (banana peel, mangosteen peel, orange peel, and pomelo peel) were used in this work to prepare high-value carbon aerogels (CA) via hydrothermal-carbonization treatment for cracking ethanol. Four kinds of CA all had good performances in the ethanol cracking reaction and improved the yield of H2 from 21 wt% to about 40 wt%. The banana peel-based carbon aerogel (BPCA) showed the best performance in the reaction; it cracked ethanol and obtained 41.86 wt% of H2. The mechanism of ethanol cracking by CA was revealed: On one hand, the self-cracking of ethanol was improved due to the extension of residence time, which benefited from the abundant pores in CA. On the other hand, the heterogeneous reaction occurred on the surface of CA where the inorganic components, mainly Ca, Mg, and K, can promote the bond-breaking and reorganization in ethanol. The CO2 in byproducts was also fixed by Ca and Mg, improving the positive cracking reaction.

Funder

Strategic International Scientific and Technological Innovation Cooperation Special Funds of National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3