Study of the Thermal Radiation Hazard from a Combustible Gas Fireball Resulting from a High-Pressure Gas Pipeline Accident

Author:

Zhou Xing1,Hao Yongmei1,Yang Jian2,Xing Zhixiang1,Xue Han1,Huang Yong1

Affiliation:

1. School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China

2. Changzhou Ganghua Gas Co., Ltd., Changzhou 213000, China

Abstract

With the rapid development of high-pressure combustible gas pipelines, it brings convenience and also buries potential safety hazards. This paper presents an in-depth exploration of the thermal radiation hazards of fireball accidents caused by leakage and provides a reference for the prevention and control of this type of accident and on-site rescue. Based on the basic principle of fluid mechanics and the calculation model of the leakage rate, a three-dimensional pipeline model was constructed by FDS software to simulate the fireballs with different positions of low, middle and high. The simulation shows that the ground temperature field of the low and middle fireballs is quite different from that of the high fireball, and the temperature level is: low position > middle position > high position. On this basis, the observation elevation angle is introduced to improve the classical fireball thermal radiation model formula, the model calculation value is compared with the numerical simulation value and the optimal threshold is determined by combining the thermal radiation flux criterion. The results show that the numerical simulation is basically consistent with the calculation results of the improved model. The smaller the observation elevation angle, the closer the target receives the thermal radiation flux to the optimal threshold and the calculated hazard range is more reliable.

Funder

Changzhou Social Development Science and Technology Support Project

Key R&D projects in Jiangsu Province

Sub-topics of the National Key R&D Program

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3