Aging Compensation in a Class-A High-Frequency Amplifier with DC Temperature Measurements

Author:

Altet Josep1ORCID,Aragones Xavier1ORCID,Barajas Enrique1ORCID,Gisbert Xavier1ORCID,Martínez Sergio1ORCID,Mateo Diego1ORCID

Affiliation:

1. Electronic Engineering Department, Universitat Politcnica de Catalunya-Barcelona Tech, 08034 Barcelona, Spain

Abstract

One of the threats to nanometric CMOS analog circuit reliability is circuit performance degradation due to transistor aging. To extend circuit operating life, the bias of the main devices within the circuit must be adjusted while the aging degradation process affects them by using a monitor circuit that tracks the evolution of the circuit performance. In this paper, we propose the use of DC temperature measurements in the proximity of the circuit to perform the monitoring of circuit performance degradation and as an observable variable to adjust the bias of the main devices to restore the degraded performance to the original values. To this end, we present experimental results obtained from nine samples of a standard CMOS integrated circuit containing a high-frequency class-A power amplifier and a differential temperature sensor. After accelerated aging, the gain of the amplifier is degraded up to 50%. We propose two different procedures to perform DC temperature measurements that allow tracking of the amplifier gain degradation due to aging and, by uniquely observing temperature readings, automatically set a new bias for the amplifier devices that restores the original amplifier gain. Whereas one of the procedures is able to restore the gain up to a certain limit, the second allows full gain restoration.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3