Entropy and the Kullback–Leibler Divergence for Bayesian Networks: Computational Complexity and Efficient Implementation

Author:

Scutari Marco1ORCID

Affiliation:

1. Istituto Dalle Molle di Studi Sull’Intelligenza Artificiale (IDSIA), 6900 Lugano, Switzerland

Abstract

Bayesian networks (BNs) are a foundational model in machine learning and causal inference. Their graphical structure can handle high-dimensional problems, divide them into a sparse collection of smaller ones, underlies Judea Pearl’s causality, and determines their explainability and interpretability. Despite their popularity, there are almost no resources in the literature on how to compute Shannon’s entropy and the Kullback–Leibler (KL) divergence for BNs under their most common distributional assumptions. In this paper, we provide computationally efficient algorithms for both by leveraging BNs’ graphical structure, and we illustrate them with a complete set of numerical examples. In the process, we show it is possible to reduce the computational complexity of KL from cubic to quadratic for Gaussian BNs.

Publisher

MDPI AG

Reference55 articles.

1. Scutari, M., and Denis, J.B. (2021). Bayesian Networks with Examples in R, Chapman & Hall. [2nd ed.].

2. Castillo, E., Gutiérrez, J.M., and Hadi, A.S. (1997). Expert Systems and Probabilistic Network Models, Springer.

3. Cowell, R.G., Dawid, A.P., Lauritzen, S.L., and Spiegelhalter, D.J. (1999). Probabilistic Networks and Expert Systems, Springer.

4. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann.

5. Koller, D., and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques, MIT Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3