A Secure and Scalable Smart Home Gateway to Bridge Technology Fragmentation

Author:

Simeoni EzequielORCID,Gaeta EugenioORCID,García-Betances Rebeca I.ORCID,Raggett Dave,Medrano-Gil Alejandro M.ORCID,Carvajal-Flores Diego F.ORCID,Fico GiuseppeORCID,Cabrera-Umpiérrez María FernandaORCID,Arredondo Waldmeyer María TeresaORCID

Abstract

Internet of Things (IoT) technologies are already playing an important role in our daily activities as we use them and rely on them to increase our abilities, connectivity, productivity and quality of life. However, there are still obstacles to achieving a unique interface able to transfer full control to users given the diversity of protocols, properties and specifications in the varied IoT ecosystem. Particularly for the case of home automation systems, there is a high degree of fragmentation that limits interoperability, increasing the complexity and costs of developments and holding back their real potential of positively impacting users. In this article, we propose implementing W3C’s Web of Things Standard supported by home automation ontologies, such as SAREF and UniversAAL, to deploy the Living Lab Gateway that allows users to consume all IoT devices from a smart home, including those physically wired and using KNX® technology. This work, developed under the framework of the EC funded Plan4Act project, includes relevant features such as security, authentication and authorization provision, dynamic configuration and injection of devices, and devices abstraction and mapping into ontologies. Its deployment is explained in two scenarios to show the achieved technology’s degree of integration, the code simplicity for developers and the system’s scalability: one consisted of external hardware interfacing with the smart home, and the other of the injection of a new sensing device. A test was executed providing metrics that indicate that the Living Lab Gateway is competitive in terms of response performance.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3