Abstract
Advanced microelectromechanical system (MEMS) magnetic field sensor applications demand ultra-high detectivity down to the low magnetic fields. To enhance the detection limit of the magnetic sensor, a resistance compensator integrated self-balanced bridge type sensor was devised for low-frequency noise reduction in the frequency range of 0.5 Hz to 200 Hz. The self-balanced bridge sensor was a NiFe (10 nm)/IrMn (10 nm) bilayer structure in the framework of planar Hall magnetoresistance (PHMR) technology. The proposed resistance compensator integrated with a self-bridge sensor architecture presented a compact and cheaper alternative to marketable MEMS MR sensors, adjusting the offset voltage compensation at the wafer level, and led to substantial improvement in the sensor noise level. Moreover, the sensor noise components of electronic and magnetic origin were identified by measuring the sensor noise spectral density as a function of temperature and operating power. The lowest achievable noise in this device architecture was estimated at ~3.34 nV/Hz at 100 Hz.
Funder
National Research Foundation of Korea
Ministry of Trade, Industry and Energy
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献