Abstract
Tailor-made nanostructured ZnO cages have been catalytically grown on Au and Pt films covering silicon substrates, by a controlled evaporation process, which means an accurate choice of temperatures, times, gas flows (He in the heating, He/air during the synthesis), and Au/Pt film thickness. The effect of the process parameters affecting the morphology and the structure of the obtained materials has been investigated by XRD analysis, scanning electron microscopy (SEM) and atomic force microscopy (AFM) microscopies, and FTIR spectroscopies. In particular, the role of the synthesis temperature in affecting the size and shape of the obtained ZnO cages has been highlighted. It will be shown that by adopting higher temperatures, the protruding nanowhiskers several microns in length, covering the cages and exhibiting both basal and prismatic faces, change into very thin and narrow structures, with extended prismatic faces, prevailing with respect to the basal ones. At an even higher process temperature, the building up of Au particles aggregates inside and/or anchored to the walls of the hollow cages, without any evidence of elongated ZnO nanostructures will be highlighted. From FTIR spectra information on lattice modes of the investigated ZnO, materials have been obtained.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献